Organic Nitrogen Compounds - Mark Scheme Q1. | Question | Answer | Mark | |----------|---|------| | number | | | | | A C ₆ H ₅ -NH ₂ < H-NH ₂ < CH ₃ -NH ₂ | 1 | Q2. | Question
number | Answer | Mark | |--------------------|------------------------------------|------| | (a) | A HNO ₂ NH ₂ | 1 | | Question
number | Answer | Mark | |--------------------|----------|------| | (b) | B HO—NN— | 1 | Q3. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (a) | A suitable equation such as: | | 1 | | | • $NH_2CH_2COOH + NaOH \rightarrow NH_2CH_2COO^{(-)}Na^{(+)} + H_2O$ | Allow zwitterion
ionic equation
displayed formulae | | | | | Ignore state symbols even if incorrect Do not award O-Na | | | Question number | Answer | | Additional guidance | Marks | |-----------------|---|-----|--|-------| | (b) | | | Example of calculation: | 2 | | | number of moles of lysine and number
of moles of HCl | (1) | n(1.825 ÷ 146=) 0.0125 (mol)
n(0.0125 × 2=) 0.025 (mol) | | | | volume of HCl in cm³ | (1) | V = (0.025 ÷ 0.100) × 1000 = 250 cm ³ | | | | | | Allow answer in dm³
Allow 1 mark for 125 cm³ | | | Question number | Answer | Additional guidance | Marks | |-----------------|--|---|-------| | (c)(i) | $H_{2}N$ $H_{2}N$ $H_{2}N$ $H_{2}N(H_{2}C)_{4}$ $H_{2}N(H_{2}C)_{4}$ $H_{2}N(H_{2}C)_{4}$ $H_{2}N(H_{2}C)_{4}$ $H_{2}N(H_{2}C)_{4}$ $H_{2}N(H_{2}C)_{4}$ | Structures
must be 3-
dimensional
Allow any
orientation | 2 | | Question
number | Answer | | Additional guidance | Marks | |--------------------|--|-----|--|-------| | (c)(ii) | A description which includes: | | | 2 | | | the plane of plane-polarised
(monochromatic) light | (1) | Allow omission of one plane | | | | will be rotated equally but in opposite
directions by the two enantiomers/left
by one (laevo-rotatory) enantiomer and
to the right by the other (dextro-
rotatory) enantiomer. | (1) | Allow use of d and l/(+) and
(-)
Do not award use of D and L | | | Question
number | Answer | Additional guidance | Marks | |--------------------|--|---------------------|-------| | (c)(iii) | glycine does not have a chiral carbon/centre
or
asymmetric carbon
or
is superimposable on its mirror image | | 1 | | Question number | Answer | | Additional guidance | Marks | |-----------------|-----------------------|-----------------------|---|-------| | (d) | A suitable diagram su | Solvent front Origin | Allow spots of any reasonable size and anywhere within the range for lysine 0.1-0.2 and for glycine 0.2-0.3 | 1 | | Question number | Answer | Additional guidance | Marks | |-----------------|--|---|-------| | (e) | A diagram such as: | Allow: | 1 | | | H O H H ₂ N — C — C — N — C — C O O H (CH ₂) ₄ H H NH ₂ | H O H
 II I
H ₂ N -C -C -N - (CH ₂) ₄ - C - COOH
H H H ₂ N | | Q4. | Question
number | Answer | Mark | |--------------------|--|------| | | CH ₃

H ₃ C—C—CN + Ni/H ₂

 | 1 | | | A | | Q5. | Question
number | Answer | Mark | |--------------------|--|------| | • | C $CH_3COCl + NH_3 \rightarrow CH_3CONH_2 + HCl$ | 1 |